

Preparing for a Life Cycle CO₂ Measure

A report to inform the debate by identifying and establishing the viability of assessing a vehicle's life cycle CO_2e footprint

- Date 20 May 2011
- Report RD.11/124801.4
- Project

Confidential

Q57627 Low Carbon Vehicle Partnership

Report by

Jane Patterson Marcus Alexander Adam Gurr

Approved

Dave Greenwood

Accelerating the Shift to Low Carbon Vehicles and Fuels

Delivering Value Through Innovation & technology

www.ricardo.com

RD.11/124801.4

Contents

Introduction

- Strengths and Limitations of the existing tailpipe CO₂ measure
- Elements and Boundaries for evaluating life cycle CO₂ emissions
- Impact of Regulations on life cycle CO₂ emissions
- Consequences of Technology Evolution on life cycle CO₂ emissions
- Gaps, Accuracy and Further Work
- Recommendations
- Conclusions
- Appendices

LowCVP commissioned a study to identify and establish the viability of assessing a vehicle's life cycle CO₂ footprint

Background

- The current metric for comparing the GHG emissions of European passenger cars is based on measuring the tailpipe CO₂ emissions over the New European Drive Cycle (NEDC)
- Legislative targets for reducing corporate fleet average CO₂ are driving the development of low carbon technologies and alternative fuels
- The tailpipe CO₂ metric is insufficient for comparing the environmental impact of zero and ultra-low emission vehicles, such as electric (EV) and fuel cell vehicles (FCV), since it does not consider CO₂ emissions resulting from the generation of the fuel, or those embedded within the vehicle production
- There is growing demand from consumers for information on the carbon footprint of the goods and services they purchase

Life cycle thinking is required to develop new measures for comparing the environmental impact of passenger cars

• The purpose of this report is inform the debate by examining the feasibility of considering a vehicle's whole life cycle, exploring the options for developing new metrics, and explaining how this could be taken forward

This report endeavours to answer a series of questions related to developing new CO₂ metrics

Report Objectives

- 1. What are the strengths and limitations of the current gCO₂/km metric for comparing the GHG-emissions of European passenger cars?
- 2. What elements contribute to a vehicle's life cycle CO_2 emissions?
- 3. What is an appropriate boundary for the evaluation of a vehicle's life cycle CO_2 emissions?
- 4. This question is in four parts:
 - a. What international regulations apply to light duty vehicles in Europe? How might these regulations impact the vehicle's life cycle CO₂ emissions?
 - b. What CO₂ emissions typically arise during the production, use and disposal of European passenger cars? How will evolving technologies, such as vehicle electrification, alter the balance of life cycle emissions between production, in-use and disposal?
 - c. What is an appropriate balance of focus between the production, in-use and disposal phases for relevant combinations of new technologies?
 - d. To what degree can the contributing elements currently be assessed?
- 5. What are the current gaps in understanding surrounding LCA of passenger cars? What is the present status of accuracy for assessing the elements contributing to a vehicle's life cycle emissions? What further work is required to achieve a fair life cycle CO₂ measure for vehicles?
- 6. In Ricardo's opinion, what are the most appropriate forms for a new measure of CO₂ emissions for European passenger vehicles? What timescales are desirable and practicable for transitioning to a new CO₂ emission measure?

Q57627

Exclusions

- In accordance with the LowCVP's tender document, this study has not:
 - Assessed the suitability of existing drive cycles, but has reviewed the limitations already identified
 - Sought to define an improved test-cycle for determination of emissions arising from the in-use phase, but has identified and assessed the viability for measuring contributing elements for vehicle production, in-use and disposal
 - Considered metrics for different vehicle classes at this stage, but has focused on light duty vehicles
 - Considered individual components unless significantly relevant to life cycle emissions
 - Considered individual components unless causing a significant variation to life cycle emissions
 - Defined a metric to replace tailpipe CO₂, but has recommend elements of a life cycle CO₂ analysis for inclusion in a metric and define principles for determining which elements should be included and a gap analysis for determining them

Source: LowCVP document "For Tender – Preparing for a lifecycle CO2 measure.doc"

Abbreviations

Abbr.	Explanation	Abbr.	Explanation	Abbr.	Explanation
AMT	Automated Manual Transmission	EREV	Extended Range Electric Vehicle	MPI	Multi-Point (fuel) Injection
Auto	Automatic Transmission	EV	Electric Vehicle NEDC		New European Drive Cycle
B7	Diesel with up to 7%vol FAME	FAME	Fatty Acid Methyl Ester	NiMH	Nickel Metal Hydride
B10	Diesel with up to 10%vol FAME	FCV	Fuel Cell Vehicle	OEM	Original Equipment Manufacturer
B100	100% biodiesel	FQD	Fuel Quality Directive	PAS	Power Assisted Steering
BoM	Bill of materials	GDI	Gasoline Direct Injection	PEM	Proton Exchange Membrane
CO ₂	Carbon Dioxide	GHG	Greenhouse Gas	PFI	Port Fuel Injection
CO ₂ e	Carbon Dioxide equivalent	GWP	Greenhouse Gas Warming Potential	PHEV	Plug-In Hybrid Electric Vehicle
CVT	Continuously Variable Transmission	H&S	Health and Safety	TTW	Tank-to-Wheels
DCT	Dual Clutch Transmission	HC	Hydrocarbons	R&D	Research and Development
DECC	Department for Energy and Climate Change	HCCI	Homogeneous Charge Compression Ignition	RED	Renewable Energy Directive
DI	Direct Injection	HEV	Hybrid Electric Vehicle	UN ECE	United Nations Economic Commission for Europe
E10	Gasoline with up to 10%vol ethanol	HVAC	Heating Ventilation and Air Conditioning	V6	V 6-cylinder engine
E20	Gasoline with up to 20%vol ethanol	14	In-line 4-cylinder engine	VCA	Executive Agency of the United Kingdom Department for Transport
E85	Gasoline with up to 85%vol ethanol	ICE	Internal Combustion Engine	VGT	Variable Geometry Turbocharger
EC	European Commission	ISO	International Organisation for Standardization	VVA	Variable Valve Actuation
ECU	Engine Control Unit	LCA	Life Cycle Assessment	VVT	Variable Valve Timing
EoL	End-of-Life	LCI	Life Cycle Inventory	WTT	Well-to-Tank
EPAS	Electric Power Assisted Steering	Li-Ion	Lithium Ion	WTW	Well-to-Wheels
				ZEV	Zero Emission Vehicle

Source: Ricardo

Carbon dioxide, greenhouse gases and Global Warming Potential

Explanation of definitions

- Greenhouse gas (GHG) is the collective term for the gases which are considered to contribute to global warming
- Carbon dioxide (CO_2) is considered to be one of the main contributors to global warming
- However GHG also includes gases, such as methane (CH_4) and nitrous oxide (N_2O)
- Life cycle assessment studies frequently refer to carbon dioxide equivalent (CO_2e or CO_2eq), which is a metric for comparing the emissions from various greenhouse gases depending on their Global Warming Potential (GWP) for a specified time horizon. The quantity of the gas is multiplied by its GWP to obtain its CO₂e value
- Examples of GWP for common GHGs is provided in the table below

Greenhouse Gas	Global Warming Potential (100 years time horizon)
CO ₂	1
CH ₄	21
N ₂ O	310

- GWP is sometimes referred to as Climate Change Potential (CCP)
- This study has focused on the vehicle's life cycle impact in terms of CO₂ and GHG emissions. However a vehicle can also impact the environment in other ways, such as air acidification (SO₂ and NOx), water footprint, depletion of resources, human toxicity and air quality

tp://www.ipcc.ch/publications_and_data/ar4/wg1/en/ch2s2-10-2.html [last accessed 15 April 2011]); http://lct.irc.ec.europa.eu/glossar Source: IPCC Client Confidential – LowCVP

Contents

- Introduction
- Strengths and Limitations of the existing tailpipe CO₂ measure
- Elements and Boundaries for evaluating life cycle CO₂ emissions
- Impact of Regulations on life cycle CO₂ emissions
- Consequences of Technology Evolution on life cycle CO₂ emissions
- Gaps, Accuracy and Further Work
- Recommendations
- Conclusions
- Appendices

The current CO_2 metric for comparing passenger cars is based on measuring tailpipe CO_2 emissions over the NEDC

Fuel Eco	VED band and CO ₂			
CO ₂ emission figure (g/kr	n)			
<=100 A				
101-110 111-120	BC	в	g/km	
121-130 131-140	DE			
141-150 151-165	F G			
166-175 176-185	H I			
186-200 201-225	J K			
226-255 256+	L M			
Fuel cost (estimal A fuel cost figure indicates to the by using the combined drive cyc the current cost per litre as at M VED for 12 month	ted) for 12,000 miles consumer a guide fuel price for comparison purposes. This figure is calculated le flown centre and motorway) and average tue price. Recalculated annually, and 2006 se 6 follows: perce 86%, dissel 100 per ul PG 50 (pr VGK March 2006),			
	Environmental Information			

A guide on fuel economy and CO₂ emissions which contains data for all new passenger car models is available at any point of sale free of charge. In addition to the fuel efficiency of a car, driving behaviour as well as other non-technical factors play a role in determining a car's fuel consumption and CO₂ emissions. CO₂ is the main greenhouse gas responsible for global warming.

Make/Model:		Engine Capacity (cc):		
Fuel Type:		Transmission:		
Fuel Consumption:				
Drive cycle	Litres/100km		Мрд	
Urban				
Extra-urban				
Combined				

Carbon dioxide emissions (g/km): Important note: Some specifications of this make/model may have lower CO_2 emissions than this. Check with your dealer.

- The current CO_2 metric for comparing passenger cars in Europe is based on measuring the tailpipe CO_2 emissions [g CO_2 /km] (EU Directive 2003/76)
 - The tailpipe CO₂ test is based on the New European Drive Cycle (NEDC), which comprised of four ECE phases (urban driving) and one EUDC phase (extra-urban)
 - The test occurs in a controlled laboratory environment, using rolling road dynamometers for repeatability
 - The vehicle has to be 'cold' at the start of the test, requiring a soak period of at least 6 hours before the test. The ambient temperature during testing has to be within 20°C and 30°C
 - For validation purposes, the test is overseen by an authorised person from the Type Approval Agency (e.g. VCA)
- The EU is adopting a fleet average tailpipe CO_2 target for new passenger cars (M1), with non-compliance penalties and supercredits for low emission vehicles (EU Regulation No 443/2009)
 - The requirement for fleet average 130 gCO₂/km will phase in from 2012 to 2015
 - A further 10 gCO₂/km reduction is to come from additional measures such as gear shift indicators, more efficient air conditioning, low rolling resistance tyres, aerodynamics and biofuels
 - The long term target is fleet average 95 gCO_2 /km by 2020

Strengths and Limitations of the existing tailpipe CO₂ measure

Strengths of the current CO₂ measure include the used of a defined drive cycle, test procedures and reference fuel

Strengths of the existing tailpipe CO₂ measure

Strengths	Comments				
 Fixed drive cycle 	 The same drive cycle is used for all light duty vehicles, providing a common reference Historic data set exists from 1995 to present day – enabling tracking of overall reduction 				
Defined reference fuels	 Prevents differences in results due to different fuels 				
Defined test procedure	 Clearly defined and understood Covers all necessary requirements for a variety of vehicles Ensures each vehicle is tested using the same procedure 				
Cold' start emissions included	 Covers the warm-up period of vehicle 				
Level playing field	 All OEMs abide by same set of rules The results acquired are consistent and, therefore, create meaningful historical emissions trends 				

• These strengths conversely can be seen as limitations ...

Strengths and Limitations of the existing tailpipe CO₂ measure

Limitations of the existing tailpipe CO₂ measure revolve around the laboratory conditions not representing the real world conditions

Limitations of the existing tailpipe CO₂ measure

Limitations	Comments
 Tailpipe only 	 No consideration of well-to-tank CO₂ emissions, just tank-to-wheels Under this condition, EVs have zero tailpipe emissions at point of use
Constrained drive cycle	 The current modal cycle (NEDC) is not representative of the range of real-world driving conditions Focuses on lower speeds (urban and extra urban), without considering higher speeds It does not consider gradients, does not account for cornering, or how driver behaviour effects driving performance
Unrepresentative environment	 The test ambient temperature (~25°C) is higher than average ambient temperature across Europe There is no allowance for climatic variation between regional markets
• No ancillaries	 Effect of ancillaries is not considered No HVAC loading No electrical loads (e.g. lights) No PAS/EPAS loads from steering inputs
Road load factors	 Data is not publicly available Scope for differing interpretation of rules when defining road load factors
Powertrain	 Little knowledge on effect of hybrids and electric vehicles Range provided for EV not representative

Strengths and Limitations of the existing tailpipe CO₂ measure

Comparing the current tailpipe CO₂ measure with the real world experience suggests real world typically exceeds NEDC results

- In 2009 TNO analysed records of fuel-card usage in the Netherlands to understand the differences between real world driving and the test-based, published fuel consumption and tailpipe CO₂ data
 - In general, fuel consumption and tailpipe CO₂ was higher than the official, published fuel consumption from the NEDC test
 - Real world tailpipe CO₂ could be 15-40% higher, depending of fuel type, technology and usage pattern
 - In the Netherlands, the real world use is approximately 20% urban, 35% extra-urban and 40% motorway driving. The NEDC is split 35% urban and 65% extra-urban driving (by distance travelled)
 - Therefore, the differences between published and real world CO₂ can be attributed, in part, to the greater share of motorway driving in the real world experience
- AutoCar regularly review new passenger cars for the benefit of their readers. The vehicles are assessed by experienced drivers, who perform a similar set of driveability tests for each vehicle. AutoCar publish the average fuel consumption of the vehicle experienced during the test drive, along side the fuel consumption stated by the vehicle manufacturer. This data provides an indication of the difference between the published fuel consumption values and the "real world" experience. Tailpipe CO₂ can be calculated from the fuel consumption, depending on the fuel type
 - A comparison of NEDC results with AutoCar experience is provided in the next slide
 - For the selected examples, real-world vehicle CO₂ emissions appear to be ~20% worse than the certified figures

Real world tailpipe CO_2 could be 5-40% higher than the NEDC CO_2 measure for conventional passenger cars ...

SELECTED EXAMPLES

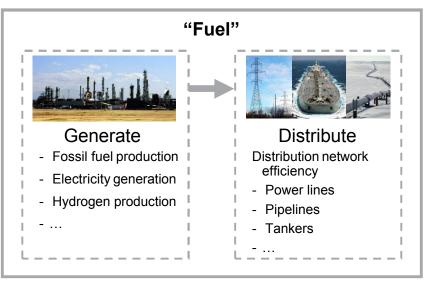
			Fuel Cor	sumption		Tailpipe CO ₂	
Segment	Vehicle	Fuel	NEDC [L/100km]	AutoCar Test [L/100km]	NEDC [gCO ₂ /km]	AutoCar Test [gCO ₂ /km]	Difference [%]
	Hyundai I10	Gasoline	5	7.5	120	180	33%
A: Mini	Fiat Panda	Gasoline	4.3	5.5	103.2	132	22%
	Mini	Gasoline	6.9	9.5	165.6	228	27%
	Renault Clio	Gasoline	6.6	8	158.4	192	18%
B: Small	Seat Ibiza	Gasoline	6.2	7.9	148.8	189.6	22%
	Ford Fiesta	Gasoline	6.5	8.3	156	199.2	22%
C: Lower	Audi A3	Gasoline	9.1	12.2	218.4	292.8	25%
Medium	Ford Focus	Gasoline	6.4	8.4	153.6	201.6	24%
D: Upper	BMW 3-series	Diesel	5.7	7.1	151.1	188.2	20%
Medium	Ford Mondeo	Diesel	6.1	7.2	161.7	190.8	15%
	BMW 5-series	Diesel	6.2	7.8	164.3	206.7	21%
E: Executive	Mercedes C-class	Gasoline	6.1	8	146.4	192	24%
	Bentley Continental	Gasoline	17.1	20.3	410.4	487.2	16%
F: Luxury	Jaguar XJ	Gasoline	7.2	10.2	172.8	244.8	29%
	BMW 7-series	Gasoline	7.2	9.7	172.8	232.8	26%
	Nissan 370Z	Gasoline	10.4	10.9	249.6	261.6	5%
G: Sports	Mazda MX-5	Gasoline	8.2	11.8	196.8	283.2	31%
	Audi TT	Gasoline	10.3	12.6	247.2	302.4	18%
	Land Rover Freelander	Diesel	7.5	10.1	198.8	267.7	26%
SUV	BMW X5	Diesel	8.7	10.7	230.6	283.6	19%
	Suzuki Grand Vitara	Diesel	9.1	11.3	241.2	299.5	19%
	Ford S-max	Diesel	6.4	9.1	169.6	241.2	30%
MPV	Mazda 5	Diesel	5.2	8.1	137.8	214.7	36%
	Vauxhall Zafira	Gasoline	7.3	10.8	175.2	259.2	32%
urce: AutoCar; Ric 627	ardo Analysis Client Confidential – LowC			20 May 2011		RD.11/124801.4	© Ricardo plc

... and for hybrids

SELECTED EXAMPLES

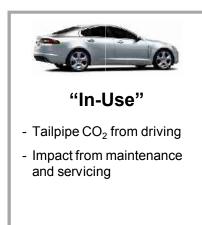
			Fuel Consumption			Tailpipe CO ₂		
Segment	Vehicle	Fuel	NEDC [L/100km]	AutoCar Test [L/100km]	NEDC [gCO ₂ /km]	AutoCar Test [gCO ₂ /km]	Difference [%]	
D: Upper	Honda Insight	Gasoline Hybrid	4.6	7.1	110.4	170.4	35%	
Medium	Toyota Prius	Gasoline Hybrid	4	5.9	96	141.6	32%	
SUV	Lexus RX450h	Gasoline Hybrid	6.3	9.7	151.2	232.8	35%	

			Fuel Consumption		Tailpi	Consumption	
Segment	Vehicle	Fuel	NEDC [Wh/100km]	AutoCar Test [Wh/100km]	NEDC [gCO ₂ /km]	AutoCar Test [gCO ₂ /km]	Difference [%]
D: Upper Medium	Nissan Leaf	Electricity	1.73	1.99	0	0	15%
G: Sports	Tesla Roadster	Electricity	1.74	2.67	0	0	54%


Contents

- Introduction
- Strengths and Limitations of the existing tailpipe CO₂ measure
- Elements and Boundaries for evaluating life cycle CO₂ emissions
- Impact of Regulations on life cycle CO₂ emissions
- Consequences of Technology Evolution on life cycle CO₂ emissions
- Gaps, Accuracy and Further Work
- Recommendations
- Conclusions
- Appendices

A vehicle's life cycle can be divided into four "blocks" – production of the vehicle, production of the fuel, "in-use", and disposal



Production

Assessment of environmental impact of producing the vehicle from raw materials to complete product

Source: Ricardo Q57627

Client Confidential – LowCVP

RD.11/124801.4

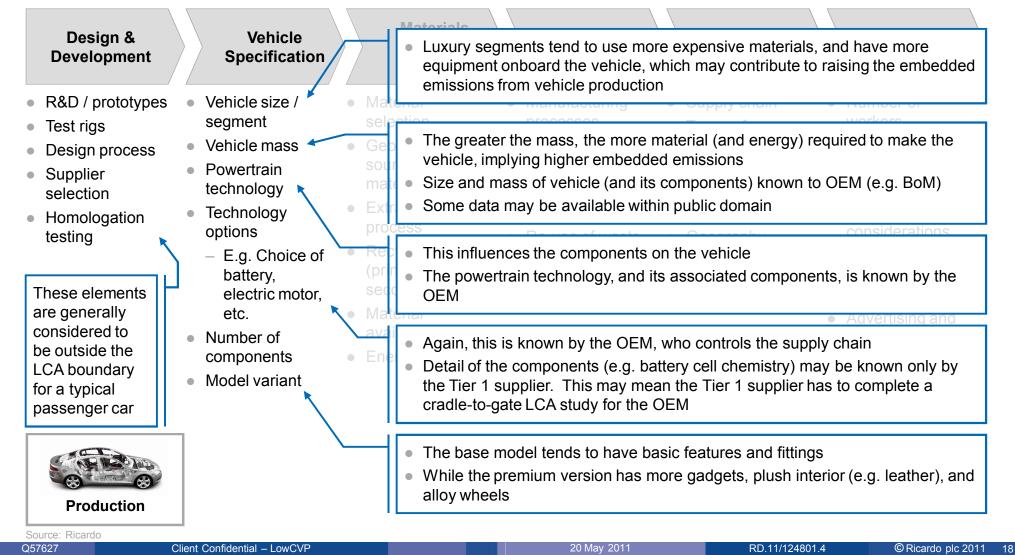
© Ricardo plc 2011

16

Material selection, energy use, production processes and supply chain logistics all contribute to the CO_2 emissions from production

Elements from vehicle production contributing to life cycle CO₂ emissions

Design & Development	Vehicle Specification	Materials & Energy	Production Processes	Logistics	People
 R&D / prototypes Test rigs Design process Supplier selection Homologation testing 	 Vehicle size / segment Vehicle mass Powertrain technology Technology options E.g. Choice of battery, electric motor, etc. Number of components Model variant 	 Material selection Geographic source of material Extraction process Recycled content (primary vs. secondary) Material availability Energy mix 	 Manufacturing processes Manufacturing / factory efficiency Location Waste produced Re-use of waste material 	 Supply chain Types of transport Distance travelled Packaging Geography 	 Number of workers Daily commute Heat and light for offices / factory H&S considerations Environmental legislation considerations Advertising and sales marketing Business trips to visit suppliers, etc.


and the

Production

The vehicle specification determines the design of the vehicle, and its resulting embedded emissions

Elements from vehicle production contributing to life cycle CO₂ emissions

Selection of materials, production processes and location have a strong impact on the embedded CO₂ from vehicle production

19

Elements from vehicle production contributing to life cycle CO₂ emissions

The logistics of the supply chain can impact the embedded CO₂ emissions from vehicle production

Materials Production **Design &** Vehicle Logistics People • LCA studies suggest transport of parts along the supply chain has a relatively small contribution to life cycle CO₂ emissions Supply chain Number of Data on the logistics of the supply chain would be known by the OEM / Tier 1 workers Types of supplier transport Daily commute • Several LCI databases contain data on CO₂ emissions resulting from transport Distance • Heat and light for of goods. Again, values can vary between databases, depending on travelled offices / factory information source, global region and year H&S Packaging Homologation process considerations options Re-use of waste Geography testing Recycled content E.g. Choice of material Environmental (primary vs. battery, legislation secondary) electric motor. considerations Material etc. Advertising and availability • Number of sales marketing • Energy mix components Business trips to Model variant visit suppliers, etc. These elements are generally considered to be outside the LCA boundary for a typical passenger car Production Source: Ricardo Client Confidential – LowCVP 20 May 2011 RD.11/124801.4

Elements from vehicle production contributing to life cycle CO₂ emissions

Q57627

© Ricardo plc 2011

20

The proposed element boundary for production includes vehicle specification, materials, energy, production processes and logistics

Elements from vehicle production contributing to life cycle CO₂ emissions

Design & Development	Vehicle Specification	Materials & Energy	Production Processes	Logistics	People
 R&D / prototypes Test rigs Design process Supplier selection Homologation testing 	 Vehicle size / segment Vehicle mass Powertrain technology Technology options E.g. Choice of battery, electric motor, etc. Number of components Model variant 	 Material selection Geographic source of material Extraction process Recycled content (primary vs. secondary) Material availability Energy mix 	 Manufacturing processes Manufacturing / factory efficiency Location Waste produced Re-use of waste material 	 Supply chain Types of transport Distance travelled Packaging Geography 	 Number of workers Daily commute Heat and light for offices / factory H&S considerations Environmental legislation considerations Advertising and sales marketing Business trips to visit suppliers, etc.
Production	 Can be measured / k Could be measured / Difficult to measure / 	known			

Source: Ricardo

Q57627

assumed

Client Confidential - LowCVP

© Ricardo plc 2011 21

Well-to-tank CO₂ emissions from the fuel depend on the primary energy source, production process and the refuelling infrastructure

Elements from fuel well-to-tank contributing to life cycle CO₂ emissions

	Primary Energy	Processing Distribution & Infrastructure	People
•	 Primary energy of fuel Primary energy source / location Energy extraction process (e.g. mining, farming, etc.) Embedded emissions associated with mining / extraction facilities Embedded emissions associated with electricity generation Feedstock availability for renewable fuels 	 Type of fuel / energy vector Selected production process(es) Process efficiency Waste Production of by-products along with fuel Fuel quality requirements Embedded emissions associated with production facilities Energy mix used during processing Electricity mix available (e.g. Fossil vs. Renewable) Method of distribution / transportation Method of distribution / transportation Pipelines, tankers, road, etc. Infrastructure chain Embedded emissions associated with refuelling stations Fuel additive packs Fuel distributer Restrictions on fuel transportation 	 Employees H&S considerations Environmental legislation considerations
	Fuel		

The choice of primary energy source has a strong influence on the fuel production process and associated WTW CO_2 emissions

Elements from fuel well-to-tank contributing to life cycle CO₂ emissions

	Distribution &
Primary Energy	Gasoline and diesel are produced from crude oil
 Primary energy of fuel Primary energy source / location Energy extraction process 	 However alternative energy vectors, such as biofuels, electricity and hydrogen, can be produced from a range of different energy sources. The choice of primary energy will impact the fuel's CO₂ emission factor (e.g. wind vs. coal for electricity generation) Process(es) - Pipelines tankers road - Environmental logislation This can influence the processes required to extract the raw energy, and how it is processed
(e.g. mining, farming, etc.)	into the required fuel / energy vector
 Embedded emissions associated with mining / extraction facilities 	 This is generally accounted for in the available LCI databases and WTW pathways (e.g. CONCAWE)
Embedded emissions	Fuer additive packs
associated with electricity	 This may be accounted for in the publically available carbon intensity data for the national electricity grid
Feedstock availability for	Energy mix used during Restrictions on fuel
renewable fuels	 E.g. CO₂ emission factors for biofuels depend on the mix of feedstocks used to make the fuel The Renewable Fuels Agency publish data on the feedstock mixes used to produce biofuels consumed in UK
- Howeve	act of direct change in land use is already accounted for in several LCI datasets for biofuels r discussions are on-going nationally and internationally regarding how the impact of indirect land nge (iLUC) should be accounted for

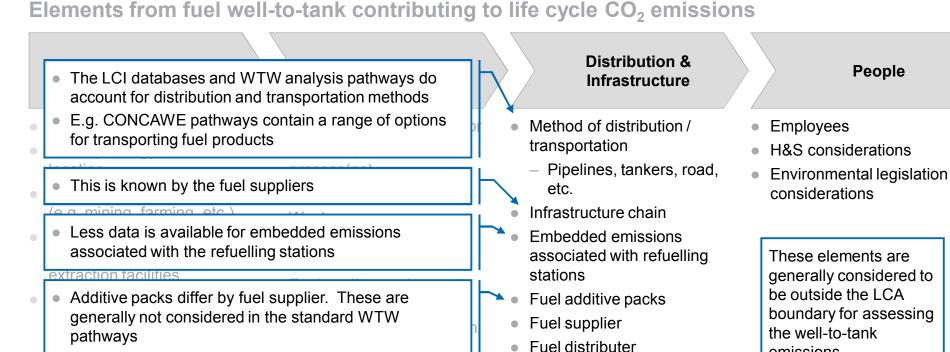
RD.11/124801.4

Client Confidential – LowCVP

Different processes can be used to make the fuel / energy vector, which will impact the WTW CO_2 emissions

Elements from fuel well-to-tank contributing to life cycle CO₂ emissions

Primary Energy Processing Type of fuel / energy vector	 This will determine the fuel processing options Existing LCI databases and WTW pathways (e.g. CONCAWE) contain emission factor data for a range of different fuels and their associated production processes
 This is assumed and accounted for in the existing LCI databases and WTW pathways Process efficiency Waste 	 There are different methods for allocating the CO₂ emissions by by-product This can impact the carbon intensity of the fuel
 Embedded emissions associated with mining / extraction facilities It is unclear how much of the embedded emissions of the production facilities are Production of by-products along with fuel Fuel quality requirements Embedded emissions associated with production facilities 	 This will influence the amount for processing needed to produce the fuel It is unclear if existing LCI databases and WTW pathways consider the impact of fuel quality requirements on the WTT CO₂ emissions of the fuel
 production facilities are accounted for in the LCI databases and WTW analysis of fuels The impact of this depends on the amount of fuel produced over the lifetime of the facility 	 The energy mix and electricity mix can be accounted for in the LCI databases and WTW pathways Data is available from a variety of sources (e.g. LCI databases, government agencies, etc.), but values can vary The carbon intensity of the electricity grid varies throughout the day, depending on electricity demand and the supply strategy. Therefore, annual averages tend to be used Marginal plant or mean CO₂ intensity could arguably be used


20 May 2011

Q57627

RD.11/124801.4 © Ricard

There are different methods for transporting the fuel from source of primary energy, through production, to the refuelling station

- eedstock availablity for
- Existing LCI databases and WTW pathways do not distinguish between fuel suppliers and distributers
- Also, it is likely that a vehicle will used fuels from a variety of different fuel suppliers over its lifetime. Therefore an "average" is required

Client Confidential – LowCVP

Fuel

Source: Ricardo Q57627

20 May 2011

Restrictions on fuel

transportation

emissions

The proposed boundary for the fuel well-to-tank pathway includes elements regarding primary energy, processing and infrastructure

Elements from fuel well-to-tank contributing to life cycle CO₂ emissions

Distribution & Primary Energy Processing People Infrastructure Primary energy of fuel Type of fuel / energy vector Method of distribution / Employees transportation Primary energy source / Selected production H&S considerations - Pipelines, tankers, road, location process(es) Environmental legislation etc. Energy extraction process Process efficiency considerations (e.g. mining, farming, etc.) Infrastructure chain Waste Embedded emissions Embedded emissions Production of by-products associated with refuelling associated with mining / along with fuel extraction facilities stations Fuel quality requirements Fuel additive packs Embedded emissions Embedded emissions associated with electricity Fuel supplier associated with production generation facilities Fuel distributer Feedstock availability for Restrictions on fuel Energy mix used during renewable fuels transportation processing Electricity mix available **Proposed Element Boundary** (e.g. Fossil vs. Renewable) Can be measured / known Could be measured / known Difficult to measure / has to be Fuel assumed

Source: Ricardo

Q57627

Client Confidential – LowCVP

20 May 2011

CO₂ emissions from the "in-use" phase depend on the vehicle technology, fuel, and how the vehicle is driven

Elements from use phase contributing to life cycle CO₂ emissions

Vehicle Specification	Fuel	Driver	Geography	Maintenance & Servicing
 Vehicle size / type Kerb weight Powertrain architecture and technology Tailpipe emissions and aftertreatment Vehicle performance Model variant Load capacity Target price Fuel consumption [L/100km] Tailpipe CO₂ emissions [g/km] 	 Fuel type / energy vector(s) Fuel specification Fuel quality Fuel supplier Fuel additive packs Standard grade vs. Premium product Fuel availablity Fuel price Fuel taxation Actual, real-world fuel consumption 	 Ownership model Owner affluence Driving habits Duty cycle(s) Length of journeys Number of journeys per day Annual mileage [km] Vehicle loading (e.g. passenger mass, luggage mass) Care of vehicle (e.g. regular checking of fluid levels and tyre pressure, etc.) Use of onboard gadgets (e.g. GPS) Use of air conditioning 	 Location Terrain (e.g. hills vs. flat) Climate and weather conditions Types of road (e.g. motorway vs. urban) Traffic management Roundabouts, traffic lights and junctions Speed bumps Speed limit changes Road congestion 	 Service interval Oil and coolant changes Replacement parts Tyres, brake discs Component durability / failure Service personnel Heat and light for garage facilities Vehicle life time [years]

Source: Ricardo

Q57627

Client Confidential – LowCVP

The manufacturer's vehicle specification has a strong influence on the published fuel consumption and tailpipe CO_2 data

28

Elements from use phase contributing to life cycle CO₂ emissions

Vehicle Specification	 Much of this infor 	tion is determined by the vermation is available within the transformer or technical specification	e public domain, usually in	SELVICIO
	Fuel type / energy /ector(s)	Ownership model	Location	Service interval
	Fuel specification	Owner affluenceDriving habits	 Terrain (e.g. hills vs. flat) 	 Oil and coolant changes
architecture and technology • Tailpipe emissions	 These elements and tailpipe CO₂ 	strongly influence the vehic	e's NEDC based fuel consu	res, brake discs
and aftertreatment	Standard grade vs. Premium product	per day	motorway vs. urban)Traffic management	 Joinhponent durability / failure Service personnel
Madaluanant	Fuel availablity	Annual mileage [km]Vehicle loading (e.g.	 Roundabouts, traffic lights and 	 Heat and light for garage facilities
 Target price Fuel consumption [L/100km] Tailpipe CO₂ 	cycle (NEDC)	n data is published, for the r my improvements may be p ner RON)	-	n drive icle life time rs]
emissions [g/km]		 pressure_etc.) ssions [g/km] multiplied by a ehicle's in-use tank-to-whee Use of air oppditioning 		provided
In-Use Source: Ricardo Q57627 Client Confiden	tial – LowCVP	conditioning	May 2011 RD.1 ²	1/124801.4 © Ricardo plc 2011

Client Confidential – LowCVP

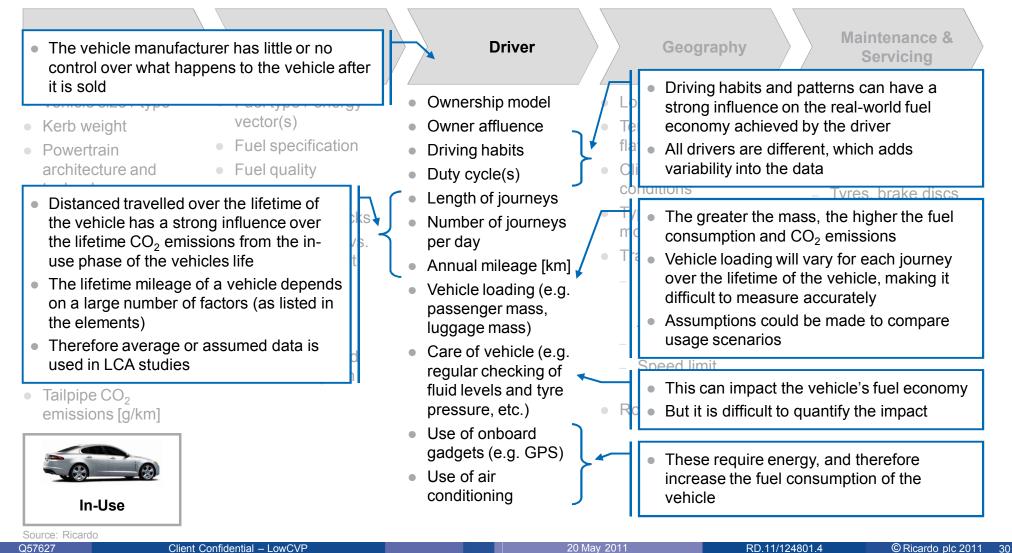
Variations in the fuel / energy vectors used by the vehicle may impact the real world results

© Ricardo plc 2011 29

RD.11/124801.4

Elements from use phase contributing to life cycle CO₂ emissions

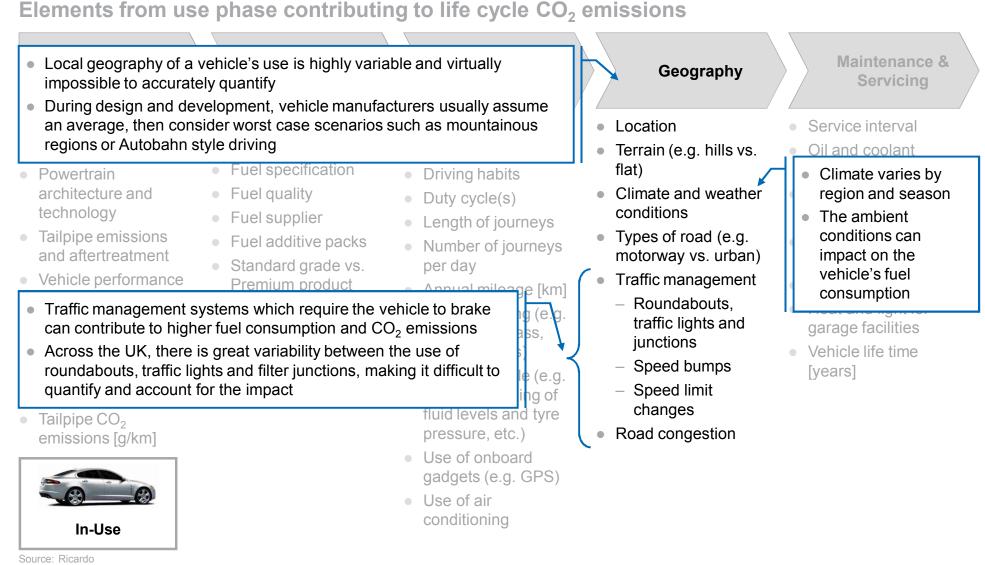
Vahiele Oreesitiesties	Fuel	Maintenance &
Vehicle Specification	Fuel	 The vehicle will be designed, and optimised, for a specified fuel(s), e.g. gasoline or diesel
• Vehicle size / type	 Fuel type / energy vector(s) 	• However the fuel specification may change during the vehicle's lifetime (e.g.
 Kerb weight 	ζ,	allowable biofuel content), which will impact the WTT CO ₂ factor
 Powertrain 	 Fuel specification 	Driving habits flat) changes
architecture and	 Fuel quality 	• In Europe, the current fuel specifications for diesel and gasoline are defined
technology	Fuel supplier	in EN 590:2009 and EN 228:2008
 Tailpipe emissions 	Fuel additive packs	 Number of journeys Types of road (e.g. Component durability
and aftertreatment	• Standard grade vs.	
• Vehicle performance	Premium product	Some fuel suppliers claim their fuel will improve fuel consumption
 Model variant 	 Fuel availablity 	 This is often due to the fuel supplier's additive pack, which is added to the fuel
 Load capacity 	Fuel price	passenger mass, junctions
 Target price 	Fuel taxation	
 Fuel consumption 	 Actual, real-world 	 In advance, it is difficult to know exactly what fuel blends will be available during the vehicle's life, and what fuel supplier the owner(s) will prefer
[L/100km]	fuel consumption	
 Tailpipe CO₂ 		fluid levels and tyre changes
emissions [g/km]		pressure, etc.) Road congestion
		Use of onboard
		gadgets (e.g. GPS)
		 Use of air
In-Use		conditioning
Source: Ricardo		


20 May 2011

Q57627

Driver behaviour adds variability into the in-use CO₂ results

Elements from use phase contributing to life cycle CO₂ emissions



Elements and Boundaries for evaluating life cycle CO₂ emissions

Client Confidential – LowCVP

Gradients, weather conditions, road layout and traffic congestion can all impact in-use fuel consumption

20 May 2011

Q57627

RD.11/124801.4 © Ricardo plc 2011

31

Client Confidential – LowCVP

Maintenance and servicing could increase the embedded emissions of the vehicle, depending on what components are replaced

Elements from use phase contributing to life cycle CO₂ emissions

Maintenance & • The vehicle manufacturer can specify the service interval and maintenance schedule for the Servicing vehicle, but they cannot make the vehicle owner comply with this schedule The MOT ensures older vehicles remain road worthy Service interval • vector(s) Terrain (e.a. hills vs. Kerh weight Owner affluence Oil and coolant Wear and tear of components depends on many factors, such as on driving style, distance changes travelled, and the weather Replacement parts technology conditions - Tyres, brake discs • Fuel supplier • Length of journeys **Tailpipe emissions** Types of road (e.g. Fuel additive packs Component durability Number of journeys moto<u>rway vs. urban</u> and aftertreatment / failure The environmental impact of workers is not usually included within LCA studies Service personnel Model variant Roundabouts. • Fuel availablity Heat and light for • Vehicle loading (e.g. traffic lights and garage facilities Load capacity • Fuel price passenger mass, junctions Vehicle life time Target price luggage mass) Fuel taxation Speed bumps [years] Fuel consumption • Care of vehicle (e.g. Actual, real-world [L/100 • The actual lifetime of the vehicle has a strong influence on the in-use CO₂ emissions Tailpi It is difficult to foretell the length of vehicle life emiss This is usually assumed to be 10 years in LCA studies gadgets (e.g. GPS) Use of air conditioning In-Use Source: Ricardo

Q57627

20 May 2011

32

The proposed boundary for assessing in-use CO₂ could include all these elements, or ...

Elements from use phase contributing to life cycle CO₂ emissions

Vehicle Specification	Fuel	Driver	Geography	Maintenance & Servicing
	 Fuel type / energy vector(s) Fuel specification Fuel quality Fuel supplier Fuel additive packs Standard grade vs. Premium product Fuel availablity Fuel price Fuel taxation Actual, real-world fuel consumption 	 Ownership model Owner affluence Driving habits Duty cycle(s) Length of journeys Number of journeys per day Annual mileage [km] Vehicle loading (e.g. passenger mass, luggage mass) Care of vehicle (e.g. regular checking of fluid levels and tyre pressure, etc.) Use of onboard gadgets (e.g. GPS) Use of air canditioning 	 Location Terrain (e.g. hills vs. flat) Climate and weather conditions Types of road (e.g. motorway vs. urban) Traffic management Roundabouts, traffic lights and junctions Speed bumps Speed limit changes Road congestion 	 Service interval Oil and coolant changes Replacement parts Tyres, brake discs Component durability / failure Service personnel Heat and light for garage facilities Vehicle life time [years]
In-Use Source: Ricardo	Difficult to measure / has to be assumed	conditioning	Proposed Element Bo	undary — — — — — -

Q57627

Client Confidential - LowCVP

20 May 2011

© Ricardo plc 2011 33

focus on the NEDC results and Product Categorisation Rules for a common comparison

Maintenance & **Vehicle Specification** Fuel Driver Geography Servicing Ownership model Service interval Vehicle size / type • Fuel type / energy Location vector(s) Kerb weight **Owner affluence** Terrain (e.g. hills vs. Oil and coolant Fuel specification flat) changes Powertrain Driving habits architecture and Climate and weather **Replacement parts** • Fuel quality Duty cycle(s) conditions technology • Fuel supplier - Tyres, brake discs ength of journeys Tailpipe emissions • Types of road (e.g. Component durability Fuel additive packs • Number of journeys and aftertreatment motorway vs. urban) / failure • Standard grade vs. per day Traffic management Vehicle performance Premium product Service personnel Annual mileage [km] Model variant Roundabouts. • Fuel availablity Heat and light for Vehicle loading (e.g. traffic lights and garage facilities Load capacity • Fuel price passenger mass, junctions ▲ Vehicle life time Target price luggage mass) Fuel taxation Speed bumps [years] Fuel consumption • Care of vehicle (e.g. Actual, real-world Speed limit [L/100km] regular checking of fuel consumption changes fluid levels and tyre Tailpipe CO₂ Road congestion pressure, etc.) emissions [g/km] Use of onboard Can be measured / known gadgets (e.g. GPS) Could be measured / known • Use of air conditioning Difficult to measure / has to be In-Use **Proposed Element Boundary** assumed

Elements from use phase contributing to life cycle CO₂ emissions

Source: Ricardo

Q57627

Client Confidential – LowCVP

20 May 2011

34

RD.11/124801.4

Emissions from vehicle end-of-life largely depend on what happens to the vehicle and its components

Elements from vehicle end-of-life contributing to life cycle CO₂ emissions

Vehicle Specification	Logistics	Processing	Re-Use & Recycling	Waste	People
 Vehicle size / segment Vehicle mass Powertrain technology Technology options (e.g. battery type) Number of components Model variant Materials Methods for joining parts together 	 Transport of vehicle / discomponents to EoL facility Distributions of recycled / components Geographical location of EoL facility (e.g. Europe vs BRIC) Er 	Process for ehicle isassembly crushing process for orting materials components processing fficiency coL process ffectiveness cleaning inergy required available energy hix used	vehicle components Actual quantiy of material / components recycled Components	 Quantity of waste material Waste disposal method (e.g. Landfill vs. energy recovery) Disposal of waste fluids Disposal of electrical and battery components Hazardous substances 	 Employees in logistics chain Employees of waste disposal facilities People vs machines for sorting materials H&S considerations Environmental considerations

Source: Ricardo

Disposal

Q57627

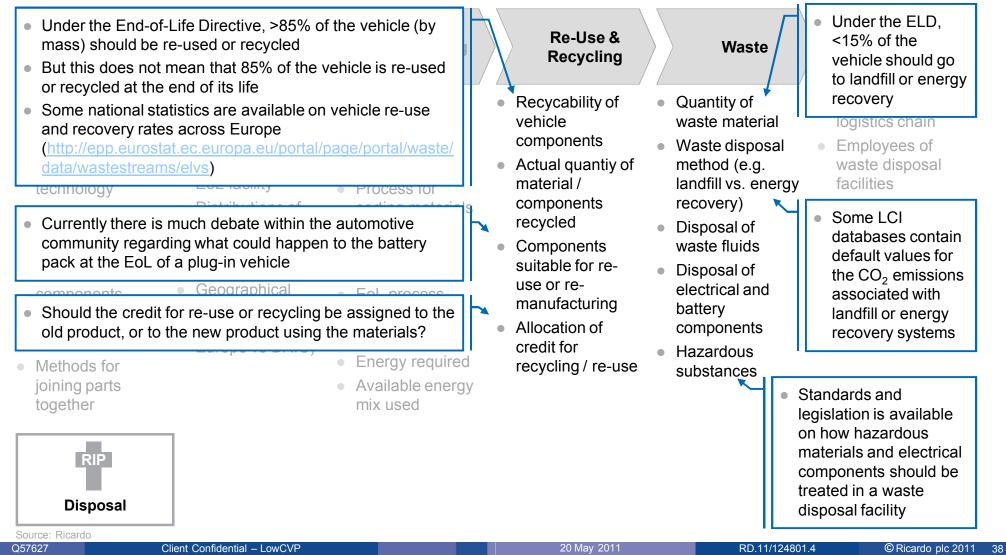
Elements related to the vehicle specification determine what could happen during the EoL phase

36

Elements from vehicle end-of-life contributing to life cycle CO₂ emissions

Vehicle Specification	 Much of this in 	cation is determined by formation is available v chures or technical spec	vithin the public domair	n, usually in	People
 Vehicle size / segment Vehicle mass 	 Vehicle collection Transport of Choice of tech 	 Process for vehicle nology may influence d 	Recycability of vehicle isposal process	 Quantity of waste material 	Employees in logistics chainEmployees of
 Powertrain technology Technology options (e.g. battery type) Number of components 	 EoL facility Distributions of recycled materials / components Geographical 	 Process for sorting materials / components Processing efficiency 	material / components recycled • Components suitable for re- use or re-	Landfill vs. energy recovery) Disposal of waste fluids Disposal of electrical and	 waste disposal facilities People vs machines for sorting materials H&S considerations
 Model variant Materials Methods for joining parts together 	• The vehicle ma	 s will be easier to re-us Cleaning Energy required ay or may not be design the quantity of parts 	credit for recycling / re-use ned for easy disasseml	 Hazardous substances bly 	 Environmental considerations
Disposal Source: Ricardo	ent Confidential – LowCVP		20 May 2011	These elements are considered to be ou boundary for a typic	utside the LCA cal passenger car

Geographical location and the processes used to dismantle and recycle the vehicle could have a large impact on EoL CO₂ emissions


Elements from vehicle end-of-life contributing to life cycle CO₂ emissions

 As for production, it is likely that the transport logistics 	Logistics Processing Vehicle collection Transport of vehicle	 These processes will require energy, which will result in CO₂ emissions Little data is currently available on the energy required to dismantle a vehicle and process its materials
associated with vehicle end-of-life will have a small contribution to the life cycle CO_2 emissions components Model variant Materials Methods for joining parts together	 Transport of vehicle / components to EoL facility Distribution of recycled materials / components Geographical location of EoL facility (e.g. Europe vs BRIC) Venicle disassembly Crushing Process for sorting material / components Processing efficiency EoL process effectiveness Cleaning Energy required Available energ mix used 	 recycled Disposal of waste fluids Suitable for re-use or re-manufacturing Allocation of credit for recycling / re-use Disposal of electrical and battery components substances Hazardous substances machines for sorting materials H&S considerations Environmental considerations
RIP Disposal	machine vs. by hand)	pact on the processes used to dismantle and sort materials (e.g. nergy mix available for processing the vehicle and its components

It is likely that most of the vehicle will be re-used or recycled, with a small quantity of waste material for landfill

Elements from vehicle end-of-life contributing to life cycle CO₂ emissions

Client Confidential – LowCVP

Ideally, LCA of the vehicle end-of-life should consider the logistics, energy and processes required to dispose of the vehicle

Elements from vehicle end-of-life contributing to life cycle CO₂ emissions

Vehicle Specification	Logistics	Processing	Re-Use & Recycling	Waste	People
 Vehicle size / segment Vehicle mass Powertrain technology Technology options (e.g. battery type) Number of components Model variant Materials Methods for joining parts together 	 Vehicle collection Transport of vehicle / components to EoL facility Distributions of recycled materials / components Geographical location of EoL facility (e.g. Europe vs BRIC) 	 Process for vehicle disassembly Crushing Process for sorting materials / components Processing efficiency EoL process effectiveness Cleaning Energy required Available energy mix used 	 Recycability of vehicle components Actual quantiy of material / components recycled Components suitable for reuse or remanufacturing Allocation of credit for recycling / re-use 	 Quantity of waste material Waste disposal method (e.g. Landfill vs. energy recovery) Disposal of waste fluids Disposal of electrical and battery components Hazardous substances 	 Employees in logistics chain Employees of waste disposal facilities People vs machines for sorting materials H&S considerations Environmental considerations
RIP Disposal Source: Ricardo	 Can be measured / kit Could be measured / Difficult to measure / assumed 	known A vehicle launch pł	LCA study is likely to b hase of a new vehicle m these EoL elements ca	nodel. There is some u	incertainty regarding

Q57627

20 May 2011

Contents

- Introduction
- Strengths and Limitations of the existing tailpipe CO₂ measure
- Elements and Boundaries for evaluating life cycle CO₂ emissions

• Impact of Regulations on life cycle CO₂ emissions

- Consequences of Technology Evolution on life cycle CO₂ emissions
- Gaps, Accuracy and Further Work
- Recommendations
- Conclusions
- Appendices

Impact of Regulations on life cycle CO₂ emissions

Some legislation is directly designed to reduce a passenger car's environmental impact but with unintended consequences ...

Legislation		effect on life			_ Commentary
Legislation	Production -			Disposal	Commentary
		WTT	TTW		
Renewable Energy Directive (Directive 2009/28/EC) / Fuel Quality Directive (Directive 2009/30/EC)	-	*	?	-	• Set European targets for increasing use of renewable energy in transport fuel, and for decreasing GHG emissions of fuels
Tailpipe CO ₂ (Regulation No 443/2009)	**	-	*	1	 Driver for uptake of new "low carbon" technologies, e.g. hybridisation and electrification Many of these technologies increase the embedded emissions of the vehicle, while significantly decreasing tailpipe CO₂
Tailpipe Emissions (Directive 2003/76/EC)	1	-	1	1	 Driver for aftertreatment and advanced combustion technologies Often strategies compromise on fuel consumption to reduce tailpipe emissions of CO, HC, NOx and particulate
Other Type Approval legislation* (as defined by Directive 2007/46/EC)	1	-	1	1	 The objective of most Type Approval legislation is to improve safety This legislation can lead to increasing the number of components within the vehicle, which increases vehicle mass and embedded CO₂ emissions
End-of-Life Directive (Directive 2000/53/EC)	?	-	-		Driver for improving the re-usability and recyclability of automotive components

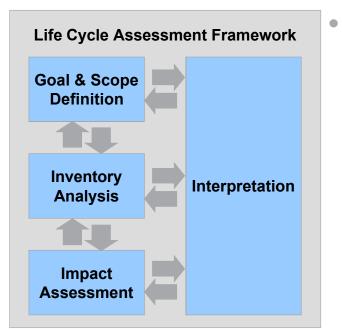
Source: European Commission, IFQC, Ricardo analysis

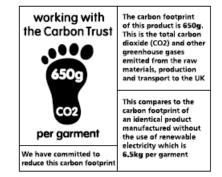
Q57627	Client Confidential – LowCVP		20 May 2011	RD.11/124801.4	© Ricardo plc 2011 41
--------	------------------------------	--	-------------	----------------	-----------------------

Impact of Regulations on life cycle CO₂ emissions

... while other legislation, not aimed at vehicle CO_2 , has an indirect effect on vehicle life cycle CO_2 emissions

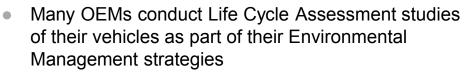
- Examples of legislation that may have a positive or negative effect on the life cycle CO₂ emissions of a passenger car:
 - Environmental Legislation applying to material extraction and processing, or manufacturing
 - Overall, likely to have a positive effect on environmental impact, but may compromise on CO₂ emissions to achieve targets
 - Health and Safety Legislation applying to material extract and processing, manufacturing, or handling and transport of materials and components
 - May restrict "best CO₂ reduction" option
 - Shipping restrictions on transport of potentially hazardous materials and components, such as battery cells
 - Emissions Trading Scheme (Directive 2009/29/EC)
 - State Aid Rules
 - May delay the market introduction of new and novel low CO₂ technologies due limited government capability to bridge the commercialisation valley of death / mountain of risk
 - Intellectual Property and Patents
 - May restrict the availability of good solutions depending on who owns the "rights"
 - Employment Law
 - Taxation and Incentives
 - Highway regulations, road restrictions and traffic management
 - E.g. Spain reducing national speed limit


Contents


- Introduction
- Strengths and Limitations of the existing tailpipe CO₂ measure
- Elements and Boundaries for evaluating life cycle CO₂ emissions
- Impact of Regulations on life cycle CO₂ emissions
- Consequences of Technology Evolution on life cycle CO₂ emissions
- Gaps, Accuracy and Further Work
- Recommendations
- Conclusions
- Appendices

International Standards already exist for defining the Life Cycle **Assessment (LCA) process**

- The Life Cycle Assessment (LCA) process is outlined ISO 14040:2006 (general principles) and 14044:2006 (guide for practitioners)
 - LCA considers the entire life cycle of a product or service, from cradleto-grave
 - It is a relative approach, structured around a functional unit, which defines what is being studied
 - LCA studies are inherently complex. Therefore transparency is important to ensure proper interpretation of the results
 - LCA considers many types of environmental impact, not just CO_2 emissions
 - Several databases are available containing Life Cycle Inventory (LCI) data on the environmental impact of different materials, energy sources and manufacturing processes
- Environmental Product Declarations (EPDs) are defined by ISO 14025. An EPD must be based on a product LCA, use Product Category Rules (PCR) for the relevant product type, and be verified by a third party
- In October 2008, BSI British Standards published PAS 2050, a Publicly Available Specification "for the assessment of life cycle greenhouse gas emissions of goods and services". This process for using LCA techniques to calculate the "carbon footprint" (CO₂ equivalent) of a product or service was co-sponsored by the Carbon Trust and UK Department for Environment, Food and Rural Affairs (DEFRA)
- An international standard for carbon footprinting is currently under discussion (ISO 14067)



© Ricardo plc 2011

44

Source: ISO 14040:2006, PAS 2050, "Product carbon footprinting: the new business opportunity" published by Carbon Trust www.carbontrust.co.uk; SPMJ Technology Consulting Client Confidential - LowCVP 20 May 2011 RD.11/124801.4

Many OEMs are already conducting Life Cycle Assessment studies of their vehicles that comply with ISO 14040 and ISO 14044

- VW began investigating LCA in the early 1990s
- Toyota started using LCA in 1997. Since 2004, LCA has been implemented for all new passenger car models, as well as those undergoing a model change
- PE International's published customer list for their GaBi LCA tool includes Audi, Daimler, Fiat, Ford, GM, Honda, Renault, Mitsubishi, Nissan, Toyota, VW, Volvo Bosch, Continental, Delphi, Siemens, Valeo, and Anglo Platinum
- Several OEMs have published the results from their LCA studies to inform customers, shareholders and other stakeholders
 - Although certificates of validity show the LCA is based on reliable data and conforms to ISO 14040, it is not clear if different OEMs use the same set of assumptions or input data sets

Client Confidential – LowCVP

Q57627

Certificates from relevant technical inspection organisations show that the LCA has been based on reliable data, and conforms to the requirements of ISO standards 14040 and 14044

RD.11/124801.4

20 May 2011

Sources: The Polo Environmental Commendation, VW, 2009 ; Prius Environmental Declaration, Toyota, 2009; www.gabi-software.com/uk-ireland/customer

45

OEM LCA studies suggest passenger car life cycle CO₂ emissions are 20-80 tonnes, depending on segment and lifetime mileage

Life Cycle Assessment of Passenger Cars – Baseline Data from Literature

Malatala	Description	Lifetime	Life Cycle	L	Life Cycle [%]			
Vehicle	le Description Mileage Total CO ₂ e [km] [tonnes CO ₂]		Production	In-Use	Disposal	Source		
VW Polo	Diesel 1.6L TDI, 55 kW (un-laden weight 1157 kg)			20.6%	79%	0.4%	VW (2009)	
VW Polo	Gasoline 1.4L MPI, 63 kW (un-laden weight 1104 kg)	150 000	29.5	~17%	~83%	<1%	VW (2009)	
VW Passat Estate B6	Diesel 2.0L TDI, 103 kW (un-laden weight 1510kg)	150,000	32.4	19%	80%	1%	VW	
VW Passat Estate B6	Gasoline 1.6L FSI, 85 kW (un-laden weight 1403kg)		38.2	18%	81%	1%	VW	
Toyota Prius	Hatchback 1.8L VVTi V (un-laden weight 1420kg)	150,000	-	26%	71%	3%	Toyota	
Mercedes- Benz A-Class	A150 Gasoline 1.5L, 70 kW, with ECO start-stop system		32	16%	83%	<1%	Mercedes- Benz (2008)	
Mercedes- Benz E-Class	E 220 CDI BlueEFFICIENCY Diesel 2.1L, 125 kW	300,000	48	18%	82%	1%	Mercedes- Benz (2009a)	
Mercedes- Benz S400 Hybrid	Gasoline 3.5L V6 205 kW 15 kW motor, Li-ion battery		78	14%	85%	<1%	Mercedes- Benz (2009b)	

Sources: VW, Toyota, Mercedes-Benz – [See Appendices for further information on these sources]

Client Confidential – LowCVP

Q57627

© Ricardo plc 2011 46

Vehicle hybridisation and electrification can reduce life cycle CO₂ emissions, but this increases embedded emissions from production

- One of the main drivers for the development of automotive technology today is reducing the in-use CO₂ emissions. The trend is towards hybridisation and electrification
- The introduction of battery packs, electric motors and power electronics into a passenger car increases the embedded CO₂ emissions associated with the vehicle's production, while significantly reducing the tailpipe CO₂ emissions from the use phase
- This leads to a shift in the life cycle balance between production and use phases

		Lifetime	Life Cycle	L			
Vehicle	Description	scription Mileage Total Co [km] [tonnes of		Production	In-Use	Disposal	Source
Conventional			64.6	13%	87%		
HEV	Based on Toyota Corolla type		46.1	18.8%	81.3%	Not considered	Samaras and d Meisterling (2008)
PHEV 30	vehicle	240,000	43.9	20.8%	79.2%		
PHEV 60	Li-Ion battery technology		43.4	23.2%	76.8%		
PHEV 90			43.9	24.6%	74.9%		
Standard Car	C-segment vehicle (e.g. VW Golf)	150,000	40.3	12.9%	87.1%		
EV	C-segment vehicle (e.g. VW Golf), with 300 kg, 30 kWh Li-Ion battery pack	150,000	19.5	34.7%	65.3%	Not considered	Gauch et al. (2009)

20 May 2011

SELECTED EXAMPLES

Source: Samaras and Meisterling (2008); Gauch et al. (2009) – [See Appendices for further information on these sources]

Client Confidential – LowCVP

Q57627

To investigate further, Ricardo has compared estimates of life cycle CO₂ emissions for a range of vehicle technologies and fuels

- Comparing results from different LCA studies can be difficult if the assumptions and input data are not the same
- Therefore, in order to evaluate how evolving technologies will alter the balance of emissions between production, in-use and disposal phases, Ricardo has produced high level estimates of life cycle CO₂ emissions for different vehicle architectures. Information on the methodology used is provided in the Appendices
- Three comparison sets have been prepared. In each set, the options are compared to a mid-size gasoline passenger car

Comparing Technologies

- Mid-size gasoline
- Mid-size plug-in hybrid vehicle (PHEV)
- Mid-size extended range electric vehicle (EREV)
- Mid-size pure electric vehicle (EV)
- Mid-size fuel cell vehicle (FCV)

Comparing Vehicle Size

- Mid-size gasoline
- Small gasoline
- Mid-size diesel
- Large diesel
- Large diesel, with downsized ICE

Comparing Biofuels

- Mid-size gasoline with E10
- Mid-size gasoline with E20
- Mid-size gasoline with E85
- Mid-size diesel with B7 (FAME)
- Mid-size diesel with B10 (FAME)
- Mid-size diesel with B100 (FAME)

Health Warning

The charts on the following slides are based on high level estimates of life cycle CO₂, and provide an indication of expected future trends. The results do not come from detailed LCA studies conducted in accordance with ISO 14040

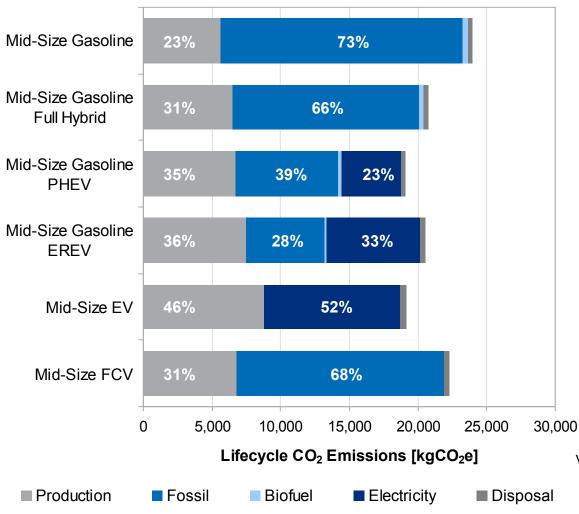
• Vehicle specifications based on Ricardo roadmap projections for 2015

- Assumed lifetime mileage 150,000 km
- Baseline gasoline assumed to be E10 (10%vol ethanol), in line with current fuel specifications
- Baseline diesel assumed to be B7 (7%vol FAME), in line with current fuel specifications
- Electricity grid mix assumed to be 500 gCO₂e/kWh (2010 values published by DECC)
- Further information about vehicle and fuel specifications is provided in the Appendix 2

Source: Ricardo Q57627

Client Confidential – LowCVP

20 May 2011


48

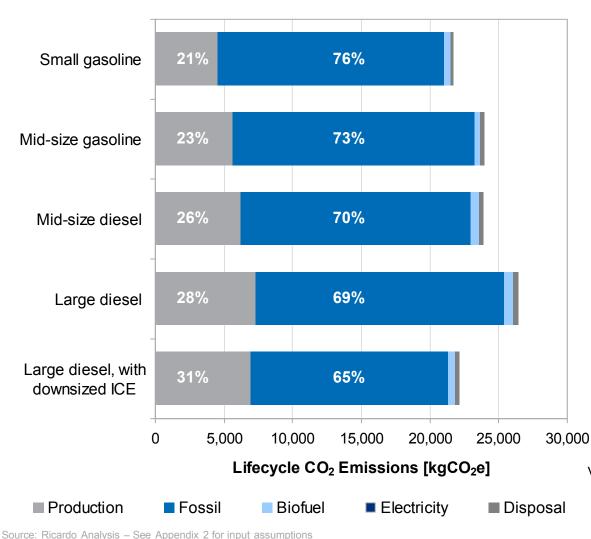
Ricardo results show hybrids and EVs will have lower life cycle CO₂ emissions, but embedded emissions will be more significant

Comparing Technologies

- Predicted improvements in the conventional ICE powertrain designed to reduce in-use tailpipe CO₂, will naturally help to lower the life cycle CO₂ emissions compared to current values
- Life cycle CO₂ reductions for hybridisation and electrification could be 10-20% (compared to a mid-size gasoline passenger car in 2015)
- However, embedded CO₂ from production will increase, due to the addition of components such as advanced battery packs, electronic motors and power electronics
 - For an EV, nearly half the life cycle
 CO₂ could result from production

Vehicle specifications based on roadmap projections for 2015. Assumed lifetime mileage 150,000 km. Fuels E10 and B7. Electricity carbon intensity assumed to be 500 gCO_2/kWh . Further details on assumptions is provided in the Appendix 2

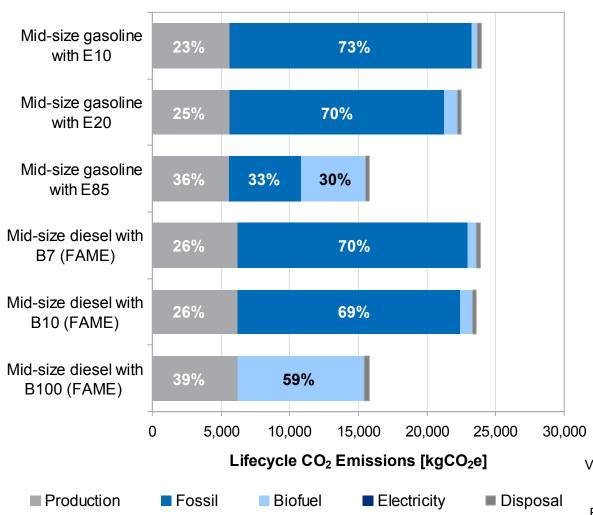
 Source: Ricardo Analysis – See Appendix 2 for input assumptions


 Q57627
 Client Confidential – LowCVP
 20 May 2011
 RD.11/124801.4
 © Ricardo plc 2011 49

Diesel and gasoline passenger cars have similar life cycle CO_2 emissions, which generally increase with vehicle size

50

Comparing Vehicle Size


- As expected, larger cars have higher life cycle CO₂ emissions
- The embedded CO₂ for diesel vehicles is higher than the embedded CO₂ for gasoline vehicles. However, since tailpipe CO₂ emissions are generally lower, the life cycle CO₂ emissions for gasoline and diesel passenger cars are very similar (assuming lifetime mileage is 150,000 km)
- Adopting downsizing ICE technology will help to reduce life cycle CO₂ emissions, although this is mainly due to improvements in fuel economy leading to lower tailpipe CO₂

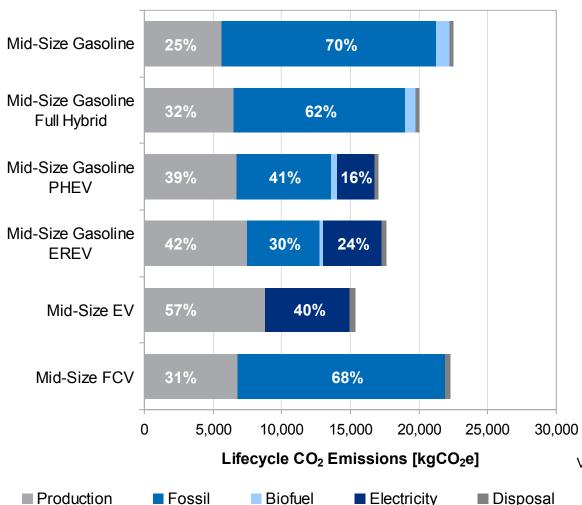
Vehicle specifications based on roadmap projections for 2015. Assumed lifetime mileage 150,000 km. Fuels E10 and B7. Electricity carbon intensity assumed to be 500 gCO_2/kWh . Further details on assumptions is provided in the Appendix 2

 Q57627
 Client Confidential – LowCVP
 20 May 2011
 RD.11/124801.4
 © Ricardo plc 2011

Increasing the biofuel content helps to reduce Well-to-Wheel CO₂ emissions ...

Comparing Alternative Fuels

Source: Ricardo Analysis - See Appendix 2 for input assumptions


- The higher the biofuel content, the lower the WTW CO₂ emissions resulting from the use of fuel
- The actual level of saving is dependent on the feedstock and production processes used to make the biofuel
- As WTW CO₂ emissions reduce, the embedded CO₂ emissions from production and disposal become a more significant part of the whole life cycle CO₂ metric

Vehicle specifications based on roadmap projections for 2015. Assumed lifetime mileage 150,000 km. Fuels E10 and B7. Electricity carbon intensity assumed to be 500 gCO_2/kWh . Further details on assumptions is provided in the Appendix 2

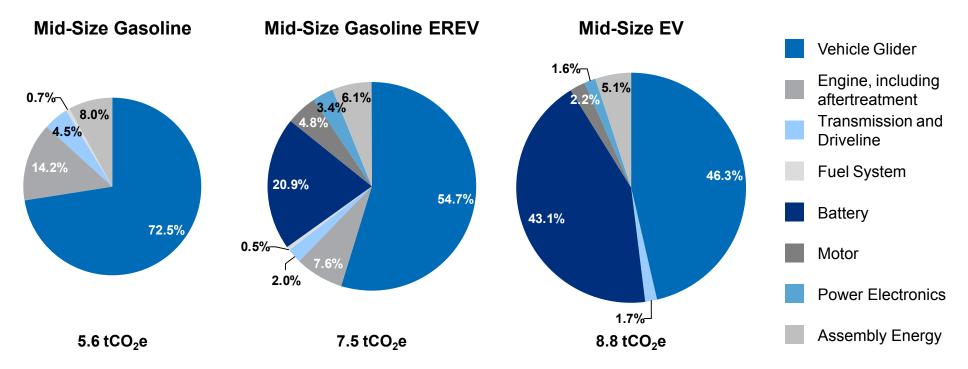
 Q57627
 Client Confidential – LowCVP
 20 May 2011
 RD.11/124801.4
 © Ricardo plc 2011
 51

... for conventional and alternative powertrain technologies

Comparing Technologies with Alternative Fuels

- The WTW CO₂ reductions achieved through increasing the use of biofuels also applies to other powertrain technologies
- Reducing the carbon intensity of the UK electricity mix also helps to reduce the WTW CO₂ emissions for plug-in vehicles
- But, as a consequence, CO₂ emissions from production become more significant
 - For an EV, >50% of life cycle $\rm CO_2$ could result from production
- Note: In this study it has been assumed that hydrogen is produced by steam methane reforming of natural gas. If produced from renewable sources, its carbon intensity would be significant reduced by ~90%

Vehicle specifications based on roadmap projections for 2015. Assumed lifetime mileage 150,000 km. Fuels E20. Electricity carbon intensity assumed to be 310 gCO₂/kWh. Further details on assumptions is provided in the Appendix 2


 Source: Ricardo Analysis – See Appendix 2 for input assumptions

 Q57627
 Client Confidential – LowCVP
 20 May 2011
 RD.11/124801.4
 © Ricardo plc 2011 52

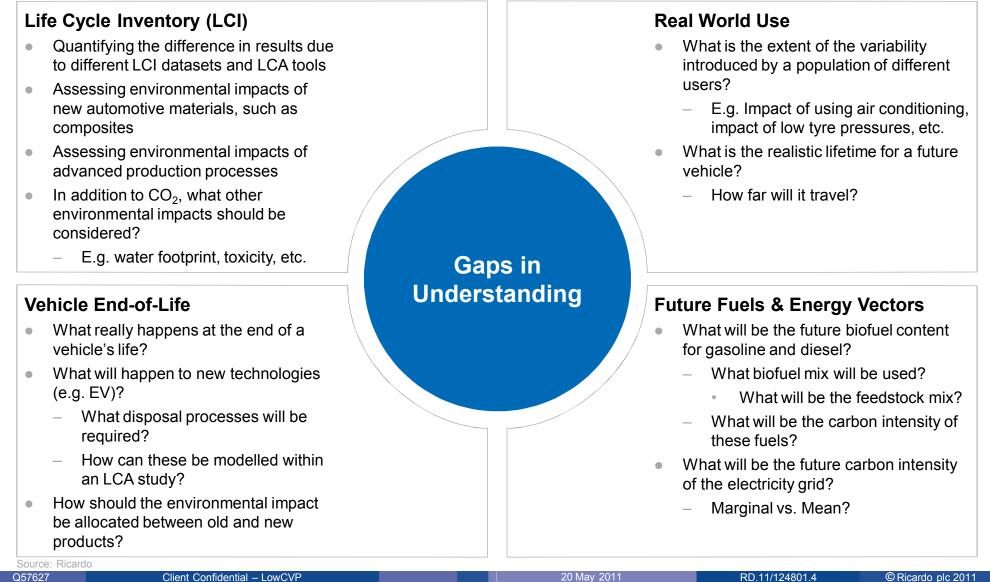
The technology evolution to plug-in vehicles will lead to higher embedded CO₂ emissions due to the addition of new components

Embedded CO₂ Emissions [kgCO₂e]

- For a standard family gasoline passenger car, >70% of the embedded CO₂ emissions result from the nonpowertrain components (the vehicle glider)
- However this balance will change with the additional components required for hybridisation and electrification. For an extended range EV, the battery could account for >20% of the embedded CO_2 emissions. While for an EV, the battery could represent >40% of the embedded CO_2 emissions from production

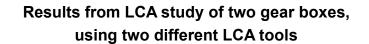
Vehicle specifications based on roadmap projections for 2015. Further details on assumptions is provided in the Appendix 2

Source: Ricardo Analysis – See Appendix 2 for input assumptions Q57627

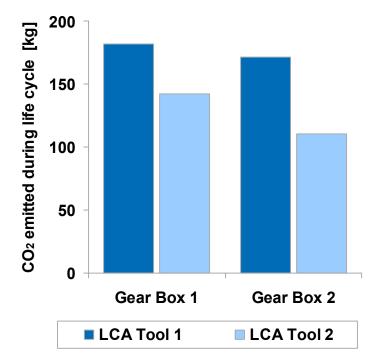

Contents

- Introduction
- Strengths and Limitations of the existing tailpipe CO₂ measure
- Elements and Boundaries for evaluating life cycle CO₂ emissions
- Impact of Regulations on life cycle CO₂ emissions
- Consequences of Technology Evolution on life cycle CO₂ emissions
- Gaps, Accuracy and Further Work
- Recommendations
- Conclusions
- Appendices

Current gaps in understanding surrounding LCA revolve around the LCI data for materials, processes, fuels and energy



55


Gaps, Accuracy and Further Work

The detail of the methodology employed by the LCA user can have a significant impact on the life cycle results

- It is possible to conduct two LCA studies of the same product, which both comply with the ISO 14040 standards, but have very different results
- Variability in LCA results can be a consequence of:
 - Functional unit definition (e.g. lifetime mileage)
 - LCA boundary, determining what has been included or excluded from the study
 - Assumptions employed
 - Life Cycle Inventory data set, and associated data quality
 - LCI databases define emission factors for materials, energy and processes
 - When selecting LCI data, the user should consider the geographical horizon, time horizon, precision, completeness and representativeness of the LCI data
 - Method for allocating environmental impact of co-products
 - If a process produces more than one product, the environmental impact can be split between the products produced
 - Choice of LCA software tool
 - Several commercial LCA tools available, in addition to in-house tools developed by vehicle manufacturers

EXAMPLE

In the above example, an LCA study was conducted of two gear boxes, one with an aluminium casing and the other with a steel casing. The study was repeated using two different LCA software tools, with the same bill of materials for the gear boxes. The differences in results is primarily due to the LCA tools using different LCI databases

56

Gaps, Accuracy and Further Work

Peer review and sensitivity analysis are recommended to ensure use of a rigorous process and to quantify variability of results

- ISO 14040 recommends that LCA studies are peer reviewed to ensure an appropriate methodology has been used
- Conducting sensitivity analysis can help to identify which elements could contribute most to result variability, and to understand the range
- Some LCI databases have data quality indexes to help users identify if the selected data is suitable for the application being investigated

However even with peer review and sensitivity analysis LCA results from different studies can still be significantly different depending on input data sets and assumptions

The LCA community is already active in initiatives to improve accuracy, data quality and use of consist methodology

Existing LCA Initiatives

• There are several organisations engaged in activities to improve the accuracy of life cycle assessment and to establish common methodologies and data sets so products can be compared on a "like with like" basis

EXAMPLES

- European Platform on Life Cycle Assessment (http://lct.jrc.ec.europa.eu)
 - The aim is to support businesses and public authorities in the implementation of Sustainable Consumption and Production
 - In March 2010 the European Commission published their ILCD handbook
 - Their Life Cycle Thinking website and LCA Forum is hosted by the European Commission Joint Research Centre, Institute for the Environment and Sustainability (JRC-IES)

- UNEP Life Cycle Initiative (<u>http://lcinitiative.unep.fr</u>)
 - An international life cycle partnership set up by the United Nations Environment Programme (UNEP) and the Society for Environmental Toxicology and Chemistry (SETAC)
 - Their main mission is to bring science-based Life Cycle approaches into practice worldwide
- 100g working with the Carbon Trust
- The Carbon Label Company (www.carbon-label.com)
 - Set up by the Carbon Trust in 2007
 - Primary objective is to help businesses to measure, certify, reduce and communicate the lifecycle greenhouse gas (GHG) emissions of their products and services

Source: EC JRC-IES, UNEP Life cycle Initiative; The Carbon Trust and the Carbon Label Company Q57627 Client Confidential – LowCVP

58

Further work is required, engaging with OEMs, LCA practitioners and vehicle drivers, to close the gaps in life cycle understanding

Suggestions to LowCVP for Future Work

• Open the dialogue with vehicle manufacturers

Encourage OEMs to publish the results (and their methodology/assumptions) from their LCA studies. This
will provide a benchmark of the current life cycle CO₂ emissions of European passenger cars, split between
production, in-use and disposal

• Make contact with LCA networks and initiatives

- Many of these networks are already active in trying to improve the quality of life cycle inventory data
- Work with the existing initatives to develop a standard / default LCI dataset for the automotive industry
- Investigate the variability of vehicle use to understand the range between extremes
 - E.g. Consumer surveys to understand travel patterns, driver styles, typical vehicle loading, use of on-board heating and air conditioning
 - Conduct sensitivity studies to appreciate the impact of different use patterns on life cycle emissions
- Research vehicle end-of-life to understand what really happens during vehicle disposal
 - What will be the impact of new technologies, such as advanced battery packs?
 - How will new materials impact re-use and recyclability?
- Make LCA part of the process
 - Get life cycle thinking embedded within the design process
 - Allow LCA results to drive reduction in both cost and CO₂ footprint ("Clean 'n' Lean")

Contents

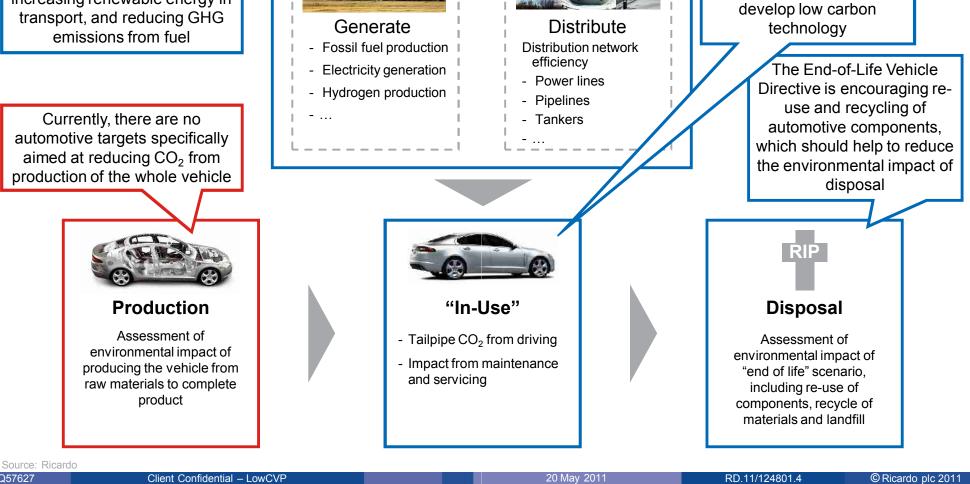
- Introduction
- Strengths and Limitations of the existing tailpipe CO₂ measure
- Elements and Boundaries for evaluating life cycle CO₂ emissions
- Impact of Regulations on life cycle CO₂ emissions
- Consequences of Technology Evolution on life cycle CO₂ emissions
- Gaps, Accuracy and Further Work
- Recommendations
- Conclusions
- Appendices

Recommendations

Europe currently has specific targets for reducing the environmental impact of a vehicle during the fuel, use and disposal phases, ...

"Fuel"

61


The fleet average tailpipe

CO₂ target is encouraging

vehicle manufacturers to

The Renewable Energy **Directive and Fuel Quality** Directive have set targets for increasing renewable energy in transport, and reducing GHG emissions from fuel

automotive targets specifically aimed at reducing CO₂ from production of the whole vehicle

Q57627

... but there are no specific CO_2 targets for the production of the whole vehicle

Recommendations for a life cycle CO₂ measure

- Consider a new CO₂ metric based on the GHG emissions emitted during vehicle production [tCO₂e]
 - The vehicle's life cycle CO_2 can then be calculated for a defined use, fuel and disposal scenario
- Consider targets aimed at reducing the life cycle CO_2 [t CO_2 e]. For example:
 - Cap on production CO₂, dependent on vehicle segment
 - Reduction target for production or life cycle CO₂, compared to an appropriate baseline
 - Maximum "pay back period" for trading increased embedded emissions against reductions in tailpipe / WTW CO₂ emissions
- Consider the fiscal and regulatory framework in which vehicles are sold, used and disposed
 - Allocation of incentives / regulation to best influence commercial and consumer behaviours for lowest life cycle CO₂

Contents

- Introduction
- Strengths and Limitations of the existing tailpipe CO₂ measure
- Elements and Boundaries for evaluating life cycle CO₂ emissions
- Impact of Regulations on life cycle CO₂ emissions
- Consequences of Technology Evolution on life cycle CO₂ emissions
- Gaps, Accuracy and Further Work
- Recommendations
- Conclusions
- Appendices

Future CO₂ metrics will need to consider a vehicle's whole life cycle, but work is required to obtain common methodologies and data sets

Conclusions

- The vehicle's embedded CO₂ from production and disposal is becoming a greater portion of the life cycle CO₂ emissions
- Current regulatory frameworks do not recognise this
- Standards, guidelines and manuals already exist for conducting Life Cycle Assessment and Environmental Product Declarations of products such as passenger cars
 - However input data, boundary conditions and assumption can vary between LCA studies
- Life Cycle Inventory databases exist containing information on the carbon intensity of materials, energy, production processes and fuels
 - Some databases are freely available within the public domain, while other proprietary databases require users to purchase a licence
 - Values can vary between databases depending on the geographical horizon, time horizon, data source, completeness and representativeness of the LCI data
- For a life cycle CO₂ measure to be regulated, work will be required to standardise the process detail, life cycle boundary, and input data, such that results from different manufacturers are directly comparable
- Key areas for further investigation include:
 - Development of a common LCI dataset to be used by the automotive industry
 - Impact of different in-use assumptions, especially around drive cycles and use of ancillary functions
 - Obtain a better understanding and modelling of the environmental impact of vehicle end of life, especially for new technologies such as electric vehicles

64

Contents

- Introduction
- Strengths and Limitations of the existing tailpipe CO₂ measure
- Elements and Boundaries for evaluating life cycle CO₂ emissions
- Impact of Regulations on life cycle CO₂ emissions
- Consequences of Technology Evolution on life cycle CO₂ emissions
- Gaps, Accuracy and Further Work
- Recommendations
- Conclusions
- Appendices

Appendix 1

References

Delivering Value Through Innovation & technology www.ricardo.com

RD.11/124801.4

References / Bibliography

- Burnham, A. and M. Wang, Y. Wu. (2006). *Development and Applications of GREET 2.7 The Transportation Vehicle-Cycle Model*. ANL/ESD/06-05; Argonne National Laboratory, Argonne, IL: 2006.
- Committee on Climate Change (2008). Building a low-carbon economy the UK's contribution to tackling climate change. The First Report of the Committee on Climate Change. The Stationery Office (TSO), London, UK, December 2008. Available to download from: <u>http://www.theccc.org.uk/reports/</u> [last accessed 4 April 2011]
- CONCAWE, EUCAR, and European Commission Joint Research Centre (2007). *Well-to-Wheels Analysis of Future Automotive Fuels and Powertrains in the European Context. WELL-to-TANK Report.* Version 2c, March 2007
- Eurostat (2011). *End-of-life vehicles (ELVs) Re-Use and Recovering Rate*. European Commission website. http://epp.eurostat.ec.europa.eu/portal/page/portal/waste/data/wastestreams/elvs [last accessed 4 April 2011]
- Gauch, M., Widmer, R., Notter, D., Stamp, A., Althaus, H.J., Wäger, P. (2009). *Life Cycle Assessment LCA of Li-lon batteries for electric vehicles*. Empa Swiss Federal Laboratories for Materials Testing and Research.
- Krinke, S. (2003). Quality of LCI data: Industry needs, reasons and challenges for the future. VW Group research, Recycling and Life-Cycle Assessment, 20-21 October 2003, International Workshop on Quality of LCI Data, Forschungszentrum Karlsruhe, Germany
- Ligterink, N. E., and Bos, B. (2010). *Passenger car CO2 emissions in tests and in the real world an analysis of business user data*. TNO Report MON-RPT-2010-00114, Delft, the Netherlands, 19 January 2010
- Mercedes-Benz (2007). Environmental Certificate A-Class. Mercedes-Benz, March 2008
- Mercedes-Benz (2009a). Lifecycle Environmental Certificate for the E-Class. Mercedes-Benz, April 2009
- Mercedes-Benz (2009b). Lifecycle Environmental Certificate for the S 400 HYBRID. Mercedes-Benz, May 2009
- Notter, D. A., Gauch, M., Widmer, R., Wager, P., Stamp, A., Zah, R., and Althaus, H.J. (2010). Contribution of Li-Ion Batteries to the Environmental Impact of Electric Vehicles. *Environmental Science Technology*, 44 (17), pp 6550–6556, 2010.

References / Bibliography

- Samaras, C. and Meisterling, K. (2008). Life Cycle Assessment of Greenhouse Gas Emissions from Plug-in Hybrid Vehicles: Implications from Policy. Carnegie Mellon University. *Environmental Science & Technology*, 2008, May 2008 pp 3170-3176
- Schmidt et al. (2004). Life Cycle Assessment of Lightweight and End-of-Life Scenarios for Generic Compact Class Passenger Vehicles. *The International Journal of Life Cycle Assessment*, p405-416, 2004
- SMMT (2010). *11th annual sustainability report*. The Society of Motor Manufacturers and Traders, UK, 2010 (2009 data)
- Yamato, M. (2005). Eco-Vehicle Assessment System (Eco-VAS): A Comprehensive Environmental Impact Assessment System for the Entire Development Process. Environmental Affairs Division. TOYOTA Technical Review Vol. 54 No. 1 Nov. 2005
- VW (2007). The Passat Environmental Commendation Background Report. Volkswagen AG, Germany, November 2007
- VW (2009). The Polo Environmental Commendation. Volkswagen AG, Germany, June 2009

Appendix 2

Further information on Ricardo analysis of impact of technology evolution on life cycle CO₂ emissions

DELIVERING VALUE THROUGH INNOVATION & TECHNOLOGY www.ricardo.com

RD.11/124801.4

Ricardo derived a set of vehicle specifications designed to produce equivalent performance characteristics by vehicle size

Vehicle Specifications based on Technology Roadmap projections for 2015

Vehicle	Vehicle Description	Vehicle Mass [kg]	Tailpipe CO ₂ [gCO ₂ /km]	EV Driving Range * [km]
Mid-Size Gasoline	1.4L 91kW I4 DI engine with VVT and FGT	1340 kg	109 gCO ₂ /km	-
Mid-Size Gasoline Full Hybrid	1.4L 91kW I4 DI engine with VVT, 1.8 kWh NiMH battery pack, 56 kW Motor	1430 kg	84 gCO ₂ /km	-
Mid-Size Gasoline PHEV	1.4L 91kW I4 DI engine with VVT, 4.8 kWh Li-ion battery back, 56 kW Motor	1460 kg	47 gCO ₂ /km	20 km
Mid-Size Gasoline EREV	1.0L 44kW I3 PFI engine, 13.4 kWh Li-ion battery back, 72 kW Motor	1510 kg	35 gCO ₂ /km	55 km
Mid-Size EV	32.2 kWh Li-ion battery back, 71 kW Motor	1480 kg	0 gCO ₂ /km	180 km
Mid-Size FCV	73 kW PEM fuel cell system, 1.8 kWh Li-ion battery back, 67 kW Motor	1410 kg	0 gCO ₂ /km	-
Small Gasoline	1.0L 59kW I3 PFI engine with VVT	1080 kg	103 gCO ₂ /km	-
Mid-Size Diesel	2.0L 101kW I4 engine with VGT Turbo	1420 kg	105 gCO ₂ /km	-
Large Diesel	3.0L 123kW V6 engine with VGT Turbo	1720 kg	113 gCO ₂ /km	_
Large Diesel, with downsized ICE and reduced vehicle weight	2.0L 123kW I4 engine with 2 stage turbocharging	1680 kg	90 gCO ₂ /km	-

* Depth of battery discharge for calculating EV range assumed to be 50% for PHEV and EREV, and 70% for EV

Source: Ricardo

Q57627	Client Confidential – LowCVP	20 May 2011	RD.11/124801.4	© Ricardo plc 2011 70

A variety of alternative fuels were considered ...

Fuel Specifications, and assumptions regarding Well-to-Tank CO₂ emissions (1/2)

- The study has considered three grades of gasoline:
 - E10 containing 10%_{vol}, 7%_{energy} ethanol
 - E20 containing 20%_{vol}, 14%_{energy} ethanol

- E85 containing 80%_{vol}, 73%_{energy} ethanol, to allow for seasonal and regional variations
- Ethanol is assumed to be from a range of feedstocks (70% sugar cane, 20% sugar beet, 8% wheat, 2% corn)
- Carbon intensity of ethanol is assumed to be 28.7 gCO₂e/MJ_{fuel}, derived from RED typical values
- Carbon intensity of gasoline is assumed to be 83.8 gCO₂e/MJ_{fuel}, RED default value
- The study has considered three grades of diesel:
 - B7 containing 7%_{vol}, 6%_{energy} FAME
 - B10 containing 10%_{vol}, 9%_{energy} FAME
 - B100 containing 100%_{vol}, 100%_{energy} FAME
 - FAME is assumed to be from a range of feedstocks (40% soy, 25% oilseed rape, 15% tallow, 10% palm, 10% other)
 - Carbon intensity of FAME is assumed to be 43.4 gCO₂e/MJ_{fuel}, derived from RED typical values
 - Carbon intensity of diesel is assumed to be 83.8 gCO₂e/MJ_{fuel}, RED default value

... including electricity and hydrogen

Fuel Specifications, and assumptions regarding Well-to-Tank CO₂ emissions (2/2)

- Electricity for plug-in vehicles assumed to be from UK National Grid
 - 2010 UK electricity carbon intensity assumed to be 500 gCO₂e/kWh, 139 gCO₂e/MJ (DECC)
 - 2020 UK electricity carbon intensity assumed to be 310 gCO₂e/kWh, 86 gCO₂e/MJ (CCC Scenario)
- Hydrogen was assumed to be from industrial sources, produced using steam methane reforming
 - Carbon intensity for hydrogen assumed to be 99.7 gCO₂e/MJ_{fuel}

Ricardo have developed a top-down methodology for estimating life cycle CO₂ emissions for a range of vehicle technologies

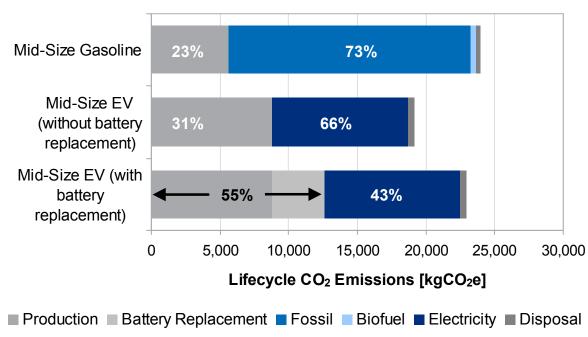
Ricardo's methodology for calculating high level estimates of life cycle CO₂ emissions

	Vehicle Production		In-Use		Fuel Production		Disposal		Total
•	Divide vehicle into key sub-systems For each system, determing the system mass and	•	Build a vehicle simulation model to predict fuel consumption, energy requirements, and tailpipe CO ₂	•	Use energy consumption data, split by fuel type, from Use phase Identify carbon	•	For this study, assume CO_2 emissions from Disposal is 5% of CO_2 emissions from production [kgCO ₂ e]	•	Sum together the CO_2 emissions from each phase to obtain the total life cycle CO_2 emissions of the vehicle [kgCO ₂ e]
•	split by material Calculate embedded emissions associated with the materials used		emissions [kgCO ₂ e]	•	 intensity for each fuel Use RED/FQD typical values Calculate the Well- ta Wheele CO 		production [kge0 ₂ c]		
•	Estimate embedded emissions resulting from production processes (e.g.			•	to-Wheels CO ₂ emissions resulting for the use of each fuel [gCO ₂ e/km] Multiply by life time		For this study, life t	imo	
•	energy mix) Sum together to calculate embedded CO ₂ emissions for vehicle production [kgCO ₂ e]				mileage to obtain total CO_2 emissions from Use and Fuel [kg CO_2 e]	_	For this study, life ti mileage assumed to 150,000 km *		

The Product Category Rule for passenger cars currently states lifetime mileage as 150,000 km. This project has not assessed if this definition is appropriate for current and future passenger car technologies

Source: Ricardo

Q57627


1

Other assumptions used in Ricardo's high level analysis of life cycle CO₂ emissions from passenger cars

Other assumptions

- Ricardo's top-down methodology provides a high level estimate of the production, in-use and disposal CO₂ emissions of a generic vehicle, useful for providing an indication of future trends in life cycle CO₂. This process does not currently confirm with ISO 14040
- Assume tailpipe CO_2 is equal to tailpipe CO_2e , since tailpipe emissions other GHGs will be very small
- For EVs, EREVs and PHEVs, assume the battery does not need to be replaced during the vehicle lifetime
 - This study has not investigated the likelihood of a Li-ion or NiMH battery pack lasting the lifetime of a plug-in vehicle

HIGH LEVEL ESTIMATE

 If the battery has to be replaced during the vehicle's life, then the embedded CO₂ emissions will increase, as illustrated in the chart left

Vehicle specifications based on roadmap projections for 2015. Assumed lifetime mileage 150,000 km. Fuels E10 and B7. Electricity carbon intensity assumed to be 500 gCO_2 /kWh. Further details on assumptions is provided in the Appendices

Source:	Ricardo
Q57627	

Appendix 3

Vehicle Type Approval

DELIVERING VALUE THROUGH INNOVATION & TECHNOLOGY www.ricardo.com

RD.11/124801.4

© Ricardo plc 2011

Appendix: Vehicle Type Approval

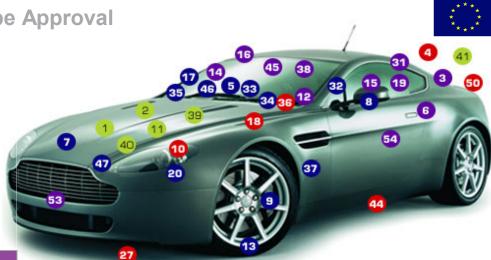
Regulations are enforceable by law, while codes and standards tend to be voluntary unless referred to in regulations

Def	initions	
	Directives	 A directive is a legislative act of the European Union, which requires member states to transport it into national law, without dictating the means of achieving that result
l	Regulations	 A regulation is a legislative act which becomes immediately enforceable as law. It is a statutory document, legally binding and has to be adhered to It is self-executing and do not require any implementing measures
l	Codes	 A code is a collection of laws or rules, specifying the minimum standard to adhere to Usually voluntary, but depends on its jurisdiction
	Standards	 A Technical Standard is an establish norm or requirement, usually defined in a formal document Developed by Standards Organisations, with diverse input, usually voluntary, but might become mandatory if adopted by government Standards are not legally binding unless refered to in a regulation
Source: F Q57627	Ricardo Legal Department; Wikipedia Client Confidential – LowCVP	20 May 2011 RD.11/124801.4 © Ricardo plc 2011

Vehicle Type Approval is granted to a vehicle that meets a minimum set of regulatory, technical and safety requirements

What is European Vehicle Type Approval?

- Vehicle Type Approval is the procedure whereby a Member State certifies that a type of vehicle satisfies the relevant administrative provisions and technical requirements relating to:
 - Active and passive safety
 - Protection of the environment
 - Performance and other issues
- The objective of Vehicle Type Approval is:
 - To enable vehicles to be put on the market according to common requirements
 - To ensure the proper functioning of the internal market in the EU
- The concept is also applicable to components and systems
- Within the Europe Community, the framework for the type approval of motor vehicles is defined in **EC Directive** 2007/46/EC
- The EC Whole Vehicle Type Approval system (ECWVTA) means that if manufacturers can obtain approval for a vehicle type in one Member State, the vehicle can be marketed within the EU without further tests or checks, subject to presenting a certificate of conformity
- Automotive EC Directives and UN ECE Regulations require third party approval (e.g. UK VCA)


Appendix: Vehicle Type Approval

To obtain European Type Approval, a vehicle has to comply with ~50 EC Directives

Europe: Application Standards for Vehicle Type Approval

Environment
01. Sound Levels EC 2007/34
02. Emissions EC 2003/76
11. Diesel Smoke EC 2005/21
39. Fuel Consumption EC 2004/3
40. Engine Power EC 1999/99
41. Diesel Emissions EC 2008/74

Active Safety	Passive Safety	27	
05. Steering Equipment EC 1999/7	19. Safety Belt Anchorage EC 2005/41		9 2 2 4 2 3 3 3 3 4 4
07. Audible Warning EC 70/388	16. Exterior Projections EC 2007/15		********
35. Wash / Wipe EC 94/68	15. Seat Strength EC 2005/39	Lighting Equipment	Other Directives
13. Antitheft EC 95/56	14. Protective Steering EC 91/662	21. Reflex Reflectors EC 97/29	27. Towing Hooks EC 96/64
32. Forward Vision EC 90/630	03. Fuel Tank EC 2006/20	22. Side, Rear and Stop lamps EC 97/30	04. Rear Registration Plate EC 70/222
08. Rear Visibility EC 2005/27	12. Interior Fittings EC 2000/4	23. Direction indicator lamps EC 1999/15	18. Statutory Plates EC 78/507
46. Tyres EC 2005/11	31. Safety Belts EC 2005/40	24. Rear registration plate lamp EC 97/31	36. Heating systems 2004/78
17. Speedometer and Reverse Gear EC 97/39	06. Door Latches and hinges EC 2001/31	25. Headlamps (including bulbs) EC 1999/17	10. Radio Interference Suppression EC 2009/19
34. Defrost / Demist EC 78/317	38. Head restraints EC 78/932	26. Front fog lamps EC 1999/18	44. Masses and Dimensions EC 95/48
09. Braking EC 2002/78	45. Safety glazing EC 2001/92	28. Rear fog lamps EC 1999/14	50. Mechanical Couplings EC 94/20
20. Lighting Installation EC 2008/89	53. Frontal impact EC 1999/98	29. Reversing Lamps EC 97/32	
33. Identification of Controls EC 94/53	54. Side impact EC 96/27	30. Parking Lamps EC 1999/16	्रत्ने
		·	

37. Wheel Guards EC 94/78

Client Confidential - LowCVP

Source: www.vca.gov.uk